Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Hum Vaccin Immunother ; 18(5): 2047582, 2022 11 30.
Article in English | MEDLINE | ID: covidwho-1740707

ABSTRACT

In March 2020, the first pandemic caused by a coronavirus was declared by the World Health Organization. Italy was one of the first and most severely affected countries, particularly the northern part of the country. The latest evidence suggests that the virus could have been circulating, at least in Italy, before the first autochthonous SARS-COV-2 case was detected in February 2020. The present study aimed to investigate the presence of antibodies against SARS-CoV-2 in human serum samples collected in the last months of 2019 (September-December) in the Apulia region, Southern Italy. Eight of 455 samples tested proved positive on in-house receptor-binding-domain-based ELISA. Given the month of collection of the positive samples, these findings may indicate early circulation of SARS-CoV-2 in Apulia region in the autumn of 2019. However, it cannot be completely ruled out that the observed sero-reactivity could be an unknown antigen specificity in another virus to which subjects were exposed containing an epitope adventitiously cross-reactive with an epitope of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/epidemiology , Epitopes , Humans , Italy/epidemiology , Pandemics
2.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: covidwho-1366850

ABSTRACT

To investigate the evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the immune population, we coincupi bated the authentic virus with a highly neutralizing plasma from a COVID-19 convalescent patient. The plasma fully neutralized the virus for seven passages, but, after 45 d, the deletion of F140 in the spike N-terminal domain (NTD) N3 loop led to partial breakthrough. At day 73, an E484K substitution in the receptor-binding domain (RBD) occurred, followed, at day 80, by an insertion in the NTD N5 loop containing a new glycan sequon, which generated a variant completely resistant to plasma neutralization. Computational modeling predicts that the deletion and insertion in loops N3 and N5 prevent binding of neutralizing antibodies. The recent emergence in the United Kingdom, South Africa, Brazil, and Japan of natural variants with similar changes suggests that SARS-CoV-2 has the potential to escape an effective immune response and that vaccines and antibodies able to control emerging variants should be developed.


Subject(s)
Amino Acid Substitution , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Antibodies, Viral/pharmacology , Binding Sites , COVID-19/genetics , COVID-19/virology , Chlorocebus aethiops , Convalescence , Gene Expression , Humans , Immune Evasion , Immune Sera/chemistry , Models, Molecular , Mutation , Neutralization Tests , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Vero Cells
3.
J Immunol Methods ; 489: 112937, 2021 02.
Article in English | MEDLINE | ID: covidwho-947285

ABSTRACT

A newly identified coronavirus, named SARS-CoV-2, emerged in December 2019 in Hubei Province, China, and quickly spread throughout the world; so far, it has caused more than 49.7 million cases of disease and 1,2 million deaths. The diagnosis of SARS-CoV-2 infection is currently based on the detection of viral RNA in nasopharyngeal swabs by means of molecular-based assays, such as real-time RT-PCR. Furthermore, serological assays detecting different classes of antibodies constitute an excellent surveillance strategy for gathering information on the humoral immune response to infection and the spread of the virus through the population. In addition, it can contribute to evaluate the immunogenicity of novel future vaccines and medicines for the treatment and prevention of COVID-19 disease. The aim of this study was to determine SARS-CoV-2-specific antibodies in human serum samples by means of different commercial and in-house ELISA kits, in order to evaluate and compare their results first with one another and then with those yielded by functional assays using wild-type virus. It is important to identify the level of SARS-CoV-2-specific IgM, IgG and IgA antibodies in order to predict human population immunity, possible cross-reactivity with other coronaviruses and to identify potentially infectious subjects. In addition, in a small sub-group of samples, a subtyping IgG ELISA has been performed. Our findings showed a notable statistical correlation between the neutralization titers and the IgG, IgM and IgA ELISA responses against the receptor-binding domain of the spike protein. Thus confirming that antibodies against this portion of the virus spike protein are highly neutralizing and that the ELISA Receptor-Binding Domain-based assay can be used as a valid surrogate for the neutralization assay in laboratories that do not have biosecurity level-3 facilities.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/blood , COVID-19/immunology , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/immunology , Cells, Cultured , Chlorocebus aethiops , Enzyme-Linked Immunosorbent Assay , Humans , Immunity, Humoral , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Vero Cells
4.
Viruses ; 12(9)2020 09 10.
Article in English | MEDLINE | ID: covidwho-769396

ABSTRACT

The recent outbreak of a novel Coronavirus (SARS-CoV-2) and its rapid spread across the continents has generated an urgent need for assays to detect the neutralising activity of human sera or human monoclonal antibodies against SARS-CoV-2 spike protein and to evaluate the serological immunity in humans. Since the accessibility of live virus microneutralisation (MN) assays with SARS-CoV-2 is limited and requires enhanced bio-containment, the approach based on "pseudotyping" can be considered a useful complement to other serological assays. After fully characterising lentiviral pseudotypes bearing the SARS-CoV-2 spike protein, we employed them in pseudotype-based neutralisation assays in order to profile the neutralising activity of human serum samples from an Italian sero-epidemiological study. The results obtained with pseudotype-based neutralisation assays mirrored those obtained when the same panel of sera was tested against the wild type virus, showing an evident convergence of the pseudotype-based neutralisation and MN results. The overall results lead to the conclusion that the pseudotype-based neutralisation assay is a valid alternative to using the wild-type strain, and although this system needs to be optimised and standardised, it can not only complement the classical serological methods, but also allows serological assessments to be made when other methods cannot be employed, especially in a human pandemic context.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/virology , Lentivirus/genetics , Neutralization Tests/methods , Pandemics , Pneumonia, Viral/virology , Animals , Antibodies, Neutralizing , Antibodies, Viral/immunology , Betacoronavirus/immunology , COVID-19 , Cell Line , Coronavirus Infections/epidemiology , Humans , Immune Sera/immunology , Italy/epidemiology , Plasmids/genetics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/biosynthesis , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/physiology , Transfection , Vesiculovirus/genetics , Viral Load
5.
J Med Virol ; 92(10): 2096-2104, 2020 10.
Article in English | MEDLINE | ID: covidwho-379986

ABSTRACT

The micro-neutralization assay is a fundamental test in virology, immunology, vaccine assessment, and epidemiology studies. Since the SARS-CoV-2 outbreak at the end of December 2019 in China, it has become extremely important to have well-established and validated diagnostic and serological assays for this new emerging virus. Here, we present a micro-neutralization assay with the use of SARS-CoV-2 wild type virus with two different methods of read-out. We evaluated the performance of this assay using human serum samples taken from an Italian seroepidemiological study being performed at the University of Siena, along with the human monoclonal antibody CR3022 and some iper-immune animal serum samples against Influenza and Adenovirus strains. The same panel of human samples have been previously tested in enzyme-linked immunosorbent assay (ELISA) as a pre-screening. Positive, borderline, and negative ELISA samples were evaluated in neutralization assay using two different methods of read-out: subjective (by means of an inverted optical microscope) and objective (by means of a spectrophotometer). Our findings suggest that at least 50% of positive ELISA samples are positive in neutralization as well, and that method is able to quantify different antibody concentrations in a specific manner. Taken together, our results confirm that the colorimetric cytopathic effect-based microneutralization assay could be used as a valid clinical test method for epidemiological and vaccine studies.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/diagnosis , Colorimetry/standards , Microscopy/standards , Neutralization Tests/standards , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/analysis , COVID-19/immunology , COVID-19/virology , Cell Line, Tumor , Chlorocebus aethiops , Colorimetry/methods , Enzyme-Linked Immunosorbent Assay , Hepatocytes/immunology , Hepatocytes/virology , Humans , Immune Sera/chemistry , Microscopy/methods , Spectrophotometry , Vero Cells , Viral Load/immunology
SELECTION OF CITATIONS
SEARCH DETAIL